
5th Mediterranean Conference on Embedded Computing ", 1
111

, MEeo 2016 Bar, Montenegro

Streaming Pulse Data to the Cloud with
Bluetooth LE or NODEMCU ESP8266

Andrej Skraba, Andrej Kolozvari, Davorin Kofjac
University ofMaribor

Cybernetics & Decision Support System Laboratory
Faculty of Organizational Sciences

Kidriceva cesta 55a, Kranj, Slovenia

Radovan Stojanovic
University of Montenegro

Faculty of Electrical Engineering
Dzordza Vasingtona bb., Podgorica, Montenegro

Vladimir Stanovov, Eugene Semen kin
Siberian State Aerospace University

Computer Science and Telecommunications Institute
31, Krasnoyarsky Rabochy Ave., Krasnoyarsk,

Russian Federation

Abstract- The paper describes the development of the three
prototypes which enable monitoring of heart pulse sensor data on
the cloud. The prototypes are based on a) Bluetooth module,
b) Low Energy Bluetooth module and c) ESP8266 Wi-Fi module.
The client side implementation is developed by the application of
JavaScript. Node.js was used on the server side with application
of node-serialport library with Bluetooth modules. In the case
where ESP8266 Wi-Fi module was used, the data was
transmitted directly to the cloud. The three different prototypes
were compared according to the power consumption and
complexity of design. The code example is provided illustrating
the approach to develop cloud based graphing interface for
biomedical mobile monitoring.

Keywords- pulse sensor; bluetooth; node.js; socket.io; cloud

I. [NTRODUCTION

Provision of the mobile, cloud based monitoring of crucial
biomedical data from the sensors is needed for online
monitoring of patients and elderly people [1, 2, 3]. There are
several technologies available in this area however, reliable
open source solutions are still in development. New, promising
technology in this demanding area is JavaScript / ECMA Script
with node.js which enables easy access to hardware protocols
and provides efficient interface to the mobile devices and
Internet as found in our previous research [4, 5, 6, 7]. Node.js
with JavaScript / ECMA Script has been applied in several
cases for providing web / cloud interface to the hardware
sensors [8]. By the node.js technology the hardware could
easily be exposed to the Internet / cloud, simplifying
development of both, client side part of the application as well
as the server side of application. The possibility to use one
language for the both sides also adds to consistency and
possibility for rapid development. [n [9] the complete loT
system was considered emphasizing the following important
subsystems: Driver, Discovery, Management and Repository.
Present paper deals mainly on the field of Driver subsystem,
touching also the discovery part. There are also possibilities to
use mobile network access such as GPRS or 4G LTE [10].
JavaScript / ECMA script with node.js has been indicated as

possible technology stack for seamlessly integrating sensor
hardware with the cloud [11]. Regarding the difficulties at
B1uetooth web sensor applications the latency should be
mentioned [11], however for many medical applications the
frequency of 50 samples/s might prove fully functional [11].
As the test of the concept, the implementation of putting the
sensor data to the cloud with three different technologies will
be described: a) Bluetooth, b) Bluetooth Low Energy and c)
NODEMCU ESP8266 [12].

[I. SYSTEM ARCHITECTURE

Fig. 1 shows setup schematics for the case where the
microcontroller Arduino UNO is used to pre-process the data
from the sensor (in our case heart rate sensor SEN-I 1574).

The data is sent by the UART to the Bluetooth module
HC-06. On the other side, the Linux Ubuntu 14.04 x86 [ntel
Compute Stick receives serial data over the integrated
B1uetooth adapter and by the node.js server side technology
exposes the data from the sensor to the cloud/Internet. The data
can be observed in real time by users using smart devices such
as phones, tablets, TV s and PCs. The sensor data can be
observed by larger number of users with web/Internet access.

The C preprocessing code is put on the Arduino in order to
provide proper TX-RX data stream which is then transferred to
the Bluetooth module, in our case HC-06. Data is wirelessly
conveyed to the integrated Bluetooth adapter on the server side,
in our case on Intel Compute Stick Mini PC x386. Upon the
Linux the node.js [13] is installed providing the possibility to
run JavaScript / ECMAScript code on the server side.
Important library is node-serialport [14] providing the
functionality of serial protocol over the USB. For the
development of GUI, the socketio library was used. On the top
of the software stack is HTML5 / JavaScript / ECMAScript
which enables us to develop an appealing GUI which runs on
all modern devices with installed Internet browser. This could
be accessed from phones [15, 16], Smart TVs, tablets and other
devices in order to monitor the sensor data in near-real time,
depending on the speed of available network.

-428 -

5th Mediterranean Conference on Embedded Computing ", 1
111

, MEeO 2016 Bar, Montenegro

Pulse sensor
SEN-11S74

WEB/INTERNET
MONITORING

'0/1"0/1' '0/1'
L/\JL/\J ... L/\~

'-------v-- ... ----'

SMART DEVICES ~D
(PHONES, TABLETS, TVS, PCS) ILJf'

.. '

A) Blue
Tooth

Module
He-06

B) Bluetooth
Low Energy

nRFB001

CLOUD / /""\.
INTERNET L---.J

Integrated
BlueTooth I

Intel compute stick
x86 MINI pC

LlNUX UBUNTU

node.js

Figure 1: Schematics of putting the analog input from the sensor in the cloud,
Here the Arduino UNO is used for preparing the data for serial

communication and transmitted with HC-06 or nRF8001 BT LE.

Another possible implementation of putting pulse data to
the cloud is shown in the Fig. 2. In this case, we have used
NODEMCU ESP8266 module. Comparing the system
configurations, the usage of NODEMCU needs less
components and is directly connected to the Wi-Fi.

5VDC
Power

Pulse sensor
SEN·11574

Q

WEB/INTERNET
MONITORING

~ •• ' SMART DEVICES

(PHONES, TABLETS,
TVS, PCS)

t!
oD»~ ~««o 0 ~\~~~~T

Figure 2: Schematics of putting the analog input from the sensor in the cloud,
Here the NODEMCU ESP8266 is used sending data from the pulse sensor to

the cloud over the Wi-Fi,

In this case, all the sensor data processing is performed on
the NODEMCU ESP8266 and transmitted over Wi-Fi
WebSocket to the cloud. Additional data processing can be
then performed on the client side with JavaScript.

III. SOFTWARE CONSIDERATIONS

Entire software development, except preprocessing code
on Arduino and NODEMCU ESP8266, was done in
JavaScript / ECMA Script, both, on the server side as well as
on the client side. Client part of the code covers entire GUI
which was done in htmlS. Fig. 3 shows a part of the code with

the "sensorRead" function. Function is called by "Value"
argument which values are displayed on the interactive chart.
The chart is coded in JavaScript / ECMA Script with canvas
2d htmlS object providing effective display of the sensor data.
Interactive graph only takes a few lines of code and the real
time charting is readily available.
socket . on (' sensorRead ' , function (v alue)

log (value) ;
sensValue ~ value ;
ctx . clearRect (O, O, canvas . width , canvas . height) ;
ctx . beginPath () ;
y . splice (O, l) ;
y [299] ~ sensValue ;
for (i ~ O ; i <300 ; i ++) { / / Graphing loop

ctx . lineTo (x [i], (300 - (y [i] / 1023) * 300 I) ;

ctx . stroke () ;
ctx . fiIIText (sensValue , 1 , 10) ;
ctx . fiIIText (" 300 " , 273 , 10) ;
ctx . fiIIText (" O" , 273 , 297) ;

I I ;

Figure 3: Part of the client side code where "sensorRead" custom function is
engaged, which draws the interactive graph of values gained from the sensor.

As mentioned client and server side of the code is written in
JavaScript / ECMA script which eases the burden of different
languages usage such as e.g. c / PHP / JavaScript.

IV. HARDWARE REALIZA nON WITH RESULTS IN
THE BROWSER

We have implemented and compared three hardware
realizations that enable us to stream data to the cloud. The
configurations are: a) HC-06 B1uetooth module based
configuration, b) Low Energy B1uetooth module nRF800 I
configuration and c) NODEMCU ESP8266 based
configuration. In the case where Bluetooth module were used,
the Arduino UNO microcontroller was used for pre-processing
data from the sensor. Fig. 4a. shows hardware prototype with
(5) HC-06 Bluetooth module, (1) is SparkFun Pulse Sensor,
(4) Arduino UNO with TX and RX connection, (2)
smartphone and (3) 4AA Battery Pack. In this case the
Arduino UNO is used only as the pre-processor for the RS232
protocol providing the proper form of the data from the sensor
for the transmission over the Serial. It is certainly costly to
have an entire microcontroller board in the design therefore
more convenient would be, for example, that the sensor would
have embedded RS232 protocol in order to reduce the costs of
the components. Such a realization is more convenient for the
wearable applications which are found in biomedicine [4, 5,
6]. By developed software stack and hardware realization the
results could be monitored in the web browser. In our case we
have used Google's Chrome browser which is preferred
browser for described application. It is also convenient to use
the Chrome browser on the mobile device, such as phone or
tablet, as well as, for example, Smart TV. Other browsers can
be used but they should have support for socket interactivity.

-429-

5th Mediterranean Conference on Embedded Computing ", 1
111

, MEeo 2016 Bar, Montenegro

~
o

80

50
1400

1500

Figure 4: Example of sensor setup with HC-06 BT Module, (1) is SparkFun Pulse Sensor, (2) Smartphone, (3) 4AA Battery Pack, (4) Arduino UNO, (5) HC-06
Bluetooth module, (6) LowEnergy Bluetooth module nRF8001 from AdaFruit, (7) NODEMCU ESP8266.

The Arduino board runs a little bit modified code provided
by sensor producer. This code processes the raw data from the
sensor, and provides beat rate data, as well as the average time
between beats. This data is sent over serial interface via
Bluetooth and then decoded by the server. Fig. 4b shows the
example of sensor setup with LowEnergy Bluetooth module
nRF800 I from AdaFruit (6). The sensor (I) data is
preprocessed on the Arduino UNO (4) which also executes the
code for the UART communication between nRF8001 and
Arduino UNO. The data could be observed on the smartphone
(2). The power is provided by the battery pack (3).

Fig. 4c. Shows the realization of the sensor setup with
NODEMCU ESP8266. This realization is the minimalistic
regarding the hardware components, however, as we will see
in the next part of the paper, the power consumption is a major
drawback. The main component is NODEMCU ESP8266 (7)
module to which the analog data form the pulse sensor (1) is
feed. The real-time data could be then observed on the
smartphone (2). The system is powered from the battery pack.

TABLE I. MEASURED CURRENTS

Configuration
Current

[mAr

BT HC-06 + Arduino UNO SMD + Pulse sensor SEN 18
11547
BT HC-06 Bluetooth module only 7.5

BT LE Adafruit nRF8001 + Arduino UNO SMD + Pulse 11
sensor SEN 11547
BT LE Adafruit nRF8001 Bluetooth module only I when 0.4
transmitting
BT LE Adafruit nRF8001 Bluetooth module only I when 0.55
not transmitting (search)
NODEMCU Arnica ESP8266 MOD 80Mhz 4Mb RAM + 30.5
Pulse sensor SEN 11547

* Measured at voltage of 5.04 V

Table I. shows the currents measured for all three

configurations, with HC-06 BT, BT LE nRF8001 and
NODEMCU ESP8266. Bold underlined current measurements
show the values for each of the configurations respectively.
One could observe, that the highest current consumption is
measured at NODEMCU ESP8266, approximately half of this
is consumption with HC-06 and even half less consumes the
BT LE nRF8001 based configuration. The B1uetooth Low
Energy nRF8001 consumes only 0.4 rnA i.e. 19 times less than
BT HC-06 module. Here we consider the current consumption
only for the communication modules.

Although the NODEMCU ESP8266 is easy to use, the
current consumption is the highest being a major drawback if
the low energy consumption is of primary importance. Current
measured on the pulse sensor SEN 11547 was less than ImA
at 3.3V. By entering the IP address and port, i.e.
https:1I192.168.1.132:8080 one gets the response from the
node.js server and the real time graph in the upper left corner
is drawn. Under the graph the interactive log of the values is
shown in order to monitor the data gained from the Bluetooth
module.

~ DIGITAL PPGF(n)
~FILTER-

4Hz

Figure 5: The signal processing algorithm steps, implemented in JavaScript.

The algorithm for processing the raw data, calculating the
average number of Beats Per Minute (BPM), as well as the
InterBeat Interval (IBI) in case of using NODEMCU was
implemented on client's side in JavaScript, as NODEMCU is
not fully Arduino-compatible. This implementation is
basically the same as C implementation, which includes 4Hz
(250ms) digital filter, as well as IBI-based filtering, so that the
peaks within 3/5 of the last IBI are not detected. The peak
detection stage keeps track of the lowest and highest sensor

-430-

5th Mediterranean Conference on Embedded Computing ", 1
111

, MEeO 2016 Bar, Montenegro

value after the last beat, and the peak is detected if the
exceeded. The algorithm keeps track of the 10 last \81 values
to average them and calculate the BPM. In case if there were
no beats for 2.5 seconds, all values are set to their defaults.
Figure 5 shows the main steps ofthe algorithm.

Developed user interface is convenient for implementation,
in our case showing only the graphical and numerical
representation of the near real-time data flow. The values on
the user interface include the time between two beats in ms, as
well as the average number of beats per second (OUI in Fig.
4). In our case we have used smartphone with installed
Chrome. By entering the IP of the server, the real time data
stream could be observed. One should also consider the
security issues; in our case the secure connection is established
over https. The web page shows the results of the sensor
output in real time on the mobile device. The IP used is
internal however, if one would provide external IP to the
server the results could be observed from the web.

V. CONCLUSION

Development of sensor monitoring by the application of the
JavaScript / ECMA Script over Bluetooth and Wi-Fi with the
use of the node.js and node-serialport library provides
promising platform. Important advantage of proposed interface
development is usage of the single language and technology on
the software side of the implementation, i.e. JavaScript /ECMA
Script, which is growing in its importance in the field of
hardware [17]. If one would like to expose the hardware to the
Cloud / Internet [18], then one of the possibilities would be
described software stack with unifying language and approach
based on the Linux and node.js.

BPM / IBI algorithm implementation in JavaScript on the
client side successfully distributed the processing burden
between client and server.

Three different prototypes vary significantly in a) system
complexity and b) in power consumption. If one would strive
for minimal power consumption, then the Low energy
Bluetooth implementation would be best of the three solutions
considered. Regarding the complexity, the application of the
NODEMCU ESP8266 is most elegant solution, having only
two components, module and the sensor. Further development
should address Discovery, Management and Repository issues.
This will be of significant importance in the future, where the
number of sensors grows and good management of sensor
orchestra will be needed in order to obtain the needed data.

ACKNOWLEDGMENT

This work was supported in part by the Slovenian Research
Agency (ARRS) (Research program "Decision support systems
in electronic commerce", program No.: UNI-MB-0586-P5-
0018), ARRS SI-RF bilateral project «Development of Speech
Controlled Wheelchair for Disabled Persons as Cyber-Physical
System» Proj. No.: (pending) and Russian Federation
Presidential Scholarship No. 16-in-689.

REFERENCES
[1] Z. Tafa and R Stojanovic. Bluetooth-based approach to monitoring

biomedical signals. WSEAS Transactions on Business and Economics.
2006/2.

[2] K Perakis, M. Haritou, R. Stojanovic, B. Asanin and D. Koutsouris.
Wireless patient monitoring for the e-inclusion of chronic patients and
elderly people. Proceedings of the 1 st international conference on
Pervasive Technologies Related to Assistive Environments. ACM
200817116.

[3] Kovacevic, Jovan; Stojanovic, Radovan; Karadaglic, Dejan; Asanin,
Bogdan; Kovacevic, Zivorad; Bundalo, Ziatko; Softic, Ferid, "FPGA
low-power implementation ofQRS detectors," in Embedded Computing
(MECO), 2014 3rd Mediterranean Conference on, vol., no., pp.98-101,
IS-19 June 2014 doi: 1O.1109IMECO.2014.6862667

[4] A Skraba, R Stojanovi6, A Zupan, A Kolozvari, D. Ko~jac. Speech­
Controlled Cloud-Based Wheelchair Platform for Disabled Persons.
Microprocessors and Microsystems, Elsevier, 2015.

[S] A Skraba A Kolozvari, D. Ko~jac, R Stojanovi6, Wheelchair
maneuvering using leap motion controller and cloud based speech
control: Prototype realization. Embedded Computing (MECO) 4th
Mediterranean Conference on, Budva, Montenegro. 14-18 June 2015,
pp. 391 - 394.

[6] A Skraba A Kolozvari, D. Ko~jac, R Stojanovi6, Prototype of speech
controlled cloud based wheelchair platform for disabled persons.
Embedded Computing (MECO) 3rd Mediterranean Conference on,
Budva, Montenegro. 15-19 June 2014, pp. 162 -16S.

[7] A Zupan, "Sophisticated Wheechairs,", Rehabilitacija 2007, vol. 6 supl.
I, Institut Republike Siovenije za rehabilitacijo, Linhartova 51. 1000
Ljubljana, pp. IS-18.

[8] Karagoez, Mehmet Fatih; Turgut, Cevahir, "Design and Implementation
of RESTful Wireless Sensor Network Gateways Using Node.js
Framework," in European Wireless 2014; 20th European Wireless
Conference; Proceedings of, vol., no., pp.I-6, 14-16 May 2014

[9] Kliem, A; Koner, M.; Weissenborn, S.; Byfield, M., "The Device
Driver Engine - Cloud enabled ubiquitous device integration," in
Intelligent Sensors, Sensor Networks and Information Processing
(IS SNIP), 201S IEEE Tenth International Conference on , vol., no.,
pp.I-7, 7-9 April201S, doi: 1O.1109IISSNIP.201S.7106921

[10] Biswas, 1.; Maniyeri, 1.; Gopalakrishnan, K.; Shue, L.; Eugene, P.1.;
Palit, H.N.; Foo Yong Siang; Lau Lik Seng; Li Xiaorong, "Processing of
wearable sensor data on the cloud - a step towards scaling of continuous
monitoring of health and well-being," in Engineering in Medicine and
Biology Society (EMBC), 2010 Annual International Conference of the
IEEE , vol., no., pp.3860-3863, Aug. 31 201O-Sept. 4 2010, doi:
I 0.1109/IEMBS.201 0.5627906

[11] Carlos, R; Coyle, S.; Corcoran, B.; Diamond, D.; Tomas, W.; Aaron,
M.; Stroiescu, F.; Daly, K., "Web-based sensor streaming wearable for
respiratory monitoring applications," in Sensors, 2011 IEEE, vol., no.,
pp.901-903, 28-31 Oct. 2011 doi: 1O.1109/ICSENS.2011.6127168

[12] www.nodemcu.com(Accessed.IS.4.2016)

[13] node.js, http://nodejs.orgl Accesed, 9.3.201S

[14] https:llgithub.com/voodootikigodlnode-serialport, Accesed, 10.10.2015.

[15] Ariff, M.H.; Ismail, I., "Livestock information system using Android
Smartphone," in Systems, Process & Control (ICSPC), 2013 IEEE
Conference on , vol., no., pp.IS4-IS8, 13-IS Dec. 2013, doi:
10.1 I 09/SPC.2013.6735 123

[16] S. Koceski, N. Koceska and I. Kocev, "Design and Evaluation of Cell
Phone Pointing Interface for Robot Control," International Journal of
Advanced Robotic systems pp. 1-9. Vol. 9,135:2012.

[17] "Why Intel Loves HTML5," http://software.intel.com/en-
us/videos/why-intel-loves-htmI5 (Accesed, 9.3.2014).

[18] R. Safaric, M. Debevc, R.M. Parkin, S. Uran S., Telerobotics
experiments via Internet. Industrial Electronics, IEEE Transactions on,
2001,48(2),424-431

-431 -

